12-11-2018 Solution
Analysis-1 FINAL Exam Semester I

1.1 (a)

1.1 (b)

1.1 (c)

1.2 (a)

For the sequence
1.1,-1.01,1.001, —1.0001, 1.00001, —1.000001, - - -

find the limit inferior, limit superior, infimum and the supremum.

Solution: Note that a,, = 1+ 147 if n is odd and a, = —(1 4+ 53=) if n is even. We see that
ag, — —1 and agpy1 — 1 as n — oo. Thus, liminfa, = —1 and limsupa, = 1. Since 1/10" is
decreasing, it is trivial to see that inf a,, = —1.01 and supa,, = 1.1.

If {an} is a sequence of positive, real numbers such that the lim,_, ”’Z“ = [, then prove that
lim,, oo ai/n =1.

Solution:  Theorem 3.37 of Priniciples of Mathematical Analysis by Walter Rudin tells that
if {a,} is a sequence of positive, real numbers such that the sequence a,11/a, converges, then

. . . 1
lim £zt = lim an/n.
n—oo 9n n—00
By considering the sequence 1, a, ab, a®b, a?b?, a3b?, ab3, - - - where a, b are distinct positive numbers
) b ) b b) ) b b) b

show that the converse of (b) is not true.

Solution: Observe that zg, = (ab)™ and x2,4+1 = a Za,. Thus, xé{f” = (ab)”/zn —+Vabasn — oo
and (2g,,41)Y D) = o/ CntD) (gp)n/Cn+1) 5 \/ab as n — oo. Therefore, lim /™ = ab. It n
n—oo
is even (n = 2k for some k), then
Tpi1  Topt1  a(ab)”

= = — — 00.
T Tk (ab)k aasn (0. ¢]

If nis odd (n = 2k + 1 for some k), then

b k+1
Tnt1 _ T2kt2 _ (ab) — —basn — oo.
Tn T2k+41 a(ab)

Therefore, lim **+ does not exist as a # b.
n

Let a, b be real numbers with a > 0. Prove that the infimum of the set {an—+b/n : n € N} equals a+b
if b < 2a and equals am + b/m when b > 2a, where m = min{k e N: k > —1/2+ /b/a + 1/4}.

Solution: Set x, = an + b/n. Then,

Tnt1 = In =0 n+1l n - n(n+1)

Case- I: (b < 2a)

For b < 2a, we have

b 1 1
< 3 < a ( because m < 5) for all n.



1.2 (b)

2.1 (a)

2.1 (b)

Therefore, x,,+1 — ©,, > 0. That is, {,,} is an increasing sequence. Hence,
inf{x, :neN} =21 =a+0b.
Case-II: (b > 2a)
Set m = min{k : k(k + 1) > b/a}. Note that k(k +1) > b/a & (k +1/2)? > (b/a + 1/4) &
|k +1/2] > \/(b/a+1/4). That is k > —1/2+ +/(b/a + 1/4). For n < m, we have n(n+ 1) < b/a,
which implies that z,4+1 — 2, < 0. That is,
T1 > T >T3 > Ty
For n > m, we have n(n + 1) > b/a, which implies that z,+1 — z, > 0. That is,
$m§$m+1 Smm+2 <
Therefore,
b
inf{z, :n €N} =z, =am+ —.
m
For any real t, prove that lim,,_, o % =0.

Solution: Let x, = % Then,

T t
ntl _ — 0 as n — oo.
Tn n+1

Therefore, by Theorem 3.2.11 of Introduction to Real Analysis by Robert G. Bartle and Donald R.
Sherbert, we can conclude that lim,, % = 0 for all real t. O

(=n"
N

Test the convergence of the series Y -,

Solution: Since {%} is a decreasing sequence of positive numbers with lim —= = 0, by Theorem
n n—oo V1

9.3.2 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert, we can conclude
that >, -, (i/l% converges.

Let {an} be a sequence of non-zero real numbers. Assume

lim n( — 1)
n— 00

exists and is > 1. Prove that ), a, converges absolutely.

(27

CLn+1

Solution:

an

— 1. Therefore,
An41

lim n( —1): lim n(l— )
n— oo n—oo

By Corollary 9.2.9 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert,
we can deduce that ) a, converges absolutely.

Gn

|~ 1> exists, we can conclude that

Since lim,, 5 n(

(079 Ap41

an

an+1



2.2 (a)

2.2 (b)

4.1 (a)

If 3", <1 an is an absolutely convergent series of real numbers, and o is a bijection of the set of
natural numbers to itself, prove that Y, -, Ug(n) also converges to the same sum.

Solution: See Theorem 9.1.5, Introduction to Real Analysis by Robert G. Bartle and Donald R.
Sherbert

Prove that the series ), < m converges to 1.

Solution: By rewriting

1 1 n+1 1 1

n+m+1) nln+2) m+2)! (m+1)! (n+2)

we see that

N

nz%nur(vlzw B i(n—kl n+2'>

n=0
= (11'_21) (21| 3!)+ ((Nj—l)!_(Nj—Q)J
1-—

(N+2)
N o0
Since lim $° b =t (1 k) = L we get S ok — 1.
Nooo iz WD N (N+2)! ' 2 nE ()]

Let S be a subset of R. Define its interior S0,
Prove that (S°)¢ = 5S¢, where A¢ denotes the complement of a set A.

Solution: Interior A° of a set A is the largest open set contained in A. Since S0 QC S, we have
S¢ C (5%)¢ = closed set (since SY is open). Thus, S¢ C (SY)¢ and therefore S° C (S¢) .

Other way inclusion: Since (S5¢) is a closed set containing S¢, (SC)C is a open set contained in S.
Thus, (SC)C C S°. Hence we proved that S° = ( C)c. That is, (S°)¢ = Se.

Let S be a subset of R. Define its closure S.
Prove that (S)¢ = (5¢)°.

Solution: Closure A of a set A is the smallest closed set that contains A. From the question 3(a),
we have S0 = (SC)C. By replacing S by S¢, we get (5)¢ = (5¢)°. Hence proved.
O

For the function f(xz) = 1/I+1 defined for x # 0, determine whether the left hand and right hand
limits exist at 0. Draw a rough graph of f(x).

Solution: Let us consider the function f(z) = When z — 0+, 1/x — oo. Thus, e'/* — 0o

— 0. i.e.,

1
. el/z41°"
and therefore 72— ]
lim f(x)=0.

z~>0+f( )



4.1 (b)

4.2 (a)

4.2 (b)

=

" T
-0 )
Givy 1

avh of £00) = : *Eo,

9
1xe
Figure 1: A rough graph of f(x)
When z — 0—,1/2 — —oo. Thus, ¢'/* — 0 and therefore 61/7}%1 — 1. ie.,
A S =1

Prove that a uniformly continuous function defined on a bounded subset of R must be bounded.

Solution: Suppose f : A C R — R is a uniformly continuous and A is bounded. Then, by
Theorem 5.4.8 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert, f
has a continuous extension g on A. That is, g : A — R is a continuous function and f(x) = g(x)
for all 2 € A. Since A is bounded, A is compact and hence g is a bounded function. Therefore, f
is bounded.

Prove that there exists no continuous bijection f from (0,1) to [0,1].

Solution: Suppose f : (0,1) — [0,1] is a bijective continuous. Choose a,b € (0,1) such that
f(a) = 0, f(b) = 1. Without loss of generality, assume that a < b. Then, f : [a,b] — [0,1] is
continuous. By Intermediate Value Theorem, f([a,b]) 2 [0, 1]. Therefore f([a,b]) = [0, 1] and thus
f:(0,1) — [0,1] cannot be bijective. Hence the result follows.

Prove that the only functions g : R — R satisfying |g(x) — g(y)| < |v — y|? for all x,y are the
constant functions.

Solution: For x # y, we have
‘ 9(z) —9(y)

‘Sxy|~
r—y



5.1 (a)

5.1 (b)

5.2 (a)

5.2 (b)

By letting y — z, we get that

J/(x) = lim 9(=) —9(y) _

y—=zr T —Y

Since ¢'(x) = 0 for all z, g must be constant.

log ()

:E .

Compute limg o4

Solution: Since 1/z — oo and logx — —oo when z — 04, we get

.1
lim —logx = —c0.
x—0+ 2

x

Prove that the Taylor series of e* + e~* converges to it for all real x.

Solution: It is trivial to see that Taylor series of e* = " % Therefore, Taylor series of

N 1+ (=) =1
T T __ n __ n
¢ te _Z nl _Z 2n)!y ’

where y = 2. Then,

an+1 (2’[7,)' 1
an  (2n+2)! Cnil@nt2) o™

x

Therefore radius of convergence of > a,y™ is co. That is, Taylor series of e 4+ ™% converges for

all real x.

Compute lim,_, /o 377((3‘?) )
Solution:
sinz cos 3z . cos3z , . . .
im — = — lim ( since sin(7/2) =1 and sin(37/2) = —1)
z—Z sin 3z cosx z—I COST
—3sin3
= — lim ﬂ ( by L’Hospital rule )
z—3 —SInT
= 3.

Let f be a thrice differentiable function such that f®) is continuous in a neighbourhood of 0. Suppose
£(0) = f/(0) = f7(0) = 0 and f®)(0) # 0. Use Taylor’s formula to deduce that f does not have a
local extremum at 0.

Solution: Since f©) is continuous at 0 and f)(0) # 0, choose r > 0 such that f©)(z) # 0 for

all x € I = (—r,r). By Taylor’s formula, for z € I, we have f(x) = %x:‘ for some a between 0
and z. Since f takes both positive and negative values in I and f(0) = 0, f dose not have a local
extremum at 0.

O



6.1 (a)

6.1 (b)

6.2 (a)

6.2 (b)

Let f : [0,1] — R be thrice differentiable. Suppose f(0) = f(1) = f'(0) = f'(1) = 0. Prove that
f@(t) =0 for some t € (0,1).

Solution:  Since f(0) = f(1) = 0, by Mean Value Theorem, there exists a a € (0,1) such
that f'(a) = 0. Since f'(0) = f’(a) = 0, there exists a b € (0,a) such that f”(b) = 0. Since
f'(a) = f'(1) = 0, there exists a ¢ € (a,1) such that f”(c) = 0. Since f”(b) = f"(c) = 0, there
exists a d € (b,¢) C (0,1) such that f"'(d) = 0. This proves the result.

Let f be an infinitely differentiable function defined on R. Suppose f(1/n) = 0 for all natural
numbers n. Prove that f*)(0) = 0 for all k > 0.

Solution: Since f(1/n) = 0 for all n, continuity of f gives that f(0) = 0. Also, by Mean Value
Theorem, for all n, there exists a x;, such that n+1 < Tin < % and f'(x1,) = 0. Thus, it is
easy to see that x1, — 0 as n — oo and by continuity of f/, we get f'(0) = 0. Again by Mean
Value Theorem, we can get 2, € (£1,n+1,21,n) such that f”’(zs,) =0. As x2,, — 0 as n — oo,
by continuity of f”, we get f”(0) = 0. By repeating this arguments again and again, we easily see
that £ (0) = 0 for all k > 0.

Consider f(x) = 2x* + 2*sin(1/z) for x # 0; f(0) = 0. Prove that in each interval (—t,t), the
derivative f' takes both positive and negative values.

Solution: Take f(z) = 2z*+x*sin(1/x) for x # 0. Then, f'(z) = 82 +423 sin(1/x) — 22 cos(1/x)
for x # 0. If 1/z = —2nm, then f'(z) = 2%(8x — cos(1/z)) = 228z — 1) < 0 as x < 0. If
1/z = 2nm+7/2, then f'(x) = 823 +42% > 0 as > 0. Thus, in each interval (—t,t), the derivative
/' takes both positive and negative values.

Suppose g is continuous on [0,2] and differentiable on (0,2). If g(0) = 0 and g(1) = g(2) = 1, prove
that there exists a € (0,2) such that ¢g'(a) = 1/2.

Solution:

By Mean Value Theorem, there exists a a € (0,2) such that

9(2) ~9(0) _
2-0

o (a) = >

Hence, the desired result follows. O



