
12-11-2018 Solution
Analysis-I FINAL Exam Semester I

1.1 (a) For the sequence
1.1,−1.01, 1.001,−1.0001, 1.00001,−1.000001, · · ·

find the limit inferior, limit superior, infimum and the supremum.

Solution: Note that an = 1 + 1
10n if n is odd and an = −(1 + 1

10n ) if n is even. We see that
a2n → −1 and a2n+1 → 1 as n → ∞. Thus, lim inf an = −1 and lim sup an = 1. Since 1/10n is
decreasing, it is trivial to see that inf an = −1.01 and sup an = 1.1.

1.1 (b) If {an} is a sequence of positive, real numbers such that the limn→∞
an+1

an
= l, then prove that

limn→∞ a
1/n
n = l.

Solution: Theorem 3.37 of Priniciples of Mathematical Analysis by Walter Rudin tells that
if {an} is a sequence of positive, real numbers such that the sequence an+1/an converges, then

lim
n→∞

an+1

an
= lim
n→∞

a
1/n
n .

1.1 (c) By considering the sequence 1, a, ab, a2b, a2b2, a3b2, a3b3, · · · where a, b are distinct positive numbers,
show that the converse of (b) is not true.

Solution: Observe that x2n = (ab)n and x2n+1 = a x2n. Thus, x
1/2n
2n = (ab)n/2n →

√
ab as n→∞

and (x2n+1)1/(2n+1) = a1/(2n+1) (ab)n/(2n+1) →
√
ab as n → ∞. Therefore, lim

n→∞
x
1/n
n =

√
ab. If n

is even (n = 2k for some k), then

xn+1

xn
=
x2k+1

x2k
=
a(ab)k

(ab)k
→ a as n→∞.

If n is odd (n = 2k + 1 for some k), then

xn+1

xn
=
x2k+2

x2k+1
=

(ab)k+1

a(ab)k
→ b as n→∞.

Therefore, lim xn+1

xn
does not exist as a 6= b.

1.2 (a) Let a, b be real numbers with a > 0. Prove that the infimum of the set {an+b/n : n ∈ N} equals a+b
if b ≤ 2a and equals am+ b/m when b > 2a, where m = min{k ∈ N : k ≥ −1/2 +

√
b/a+ 1/4}.

Solution: Set xn = an+ b/n. Then,

xn+1 − xn = a+ b

(
1

n+ 1
− 1

n

)
= a− b

n(n+ 1)
.

Case- I: (b ≤ 2a)
For b ≤ 2a, we have

b

n(n+ 1)
≤ b

2
≤ a ( because

1

n(n+ 1)
≤ 1

2
) for all n.
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Therefore, xn+1 − xn ≥ 0. That is, {xn} is an increasing sequence. Hence,

inf{xn : n ∈ N} = x1 = a+ b.

Case-II: (b > 2a)
Set m = min{k : k(k + 1) ≥ b/a}. Note that k(k + 1) ≥ b/a ⇔ (k + 1/2)2 ≥ (b/a + 1/4) ⇔
|k + 1/2| ≥

√
(b/a+ 1/4). That is k ≥ −1/2 +

√
(b/a+ 1/4). For n < m, we have n(n+ 1) < b/a,

which implies that xn+1 − xn < 0. That is,

x1 > x2 > x3 > · · ·xm.

For n ≥ m, we have n(n+ 1) ≥ b/a, which implies that xn+1 − xn ≥ 0. That is,

xm ≤ xm+1 ≤ xm+2 ≤ · · · .

Therefore,

inf{xn : n ∈ N} = xm = am+
b

m
.

1.2 (b) For any real t, prove that limn→∞
tn

n! = 0.

Solution: Let xn = tn

n! . Then,

xn+1

xn
=

t

n+ 1
→ 0 as n→∞.

Therefore, by Theorem 3.2.11 of Introduction to Real Analysis by Robert G. Bartle and Donald R.
Sherbert, we can conclude that limn→∞

tn

n! = 0 for all real t. �

2.1 (a) Test the convergence of the series
∑
n≥1

(−1)n√
n

.

Solution: Since { 1√
n
} is a decreasing sequence of positive numbers with lim

n→∞
1√
n

= 0, by Theorem

9.3.2 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert, we can conclude

that
∑
n≥1

(−1)n√
n

converges.

2.1 (b) Let {an} be a sequence of non-zero real numbers. Assume

lim
n→∞

n

(∣∣∣∣ anan+1

∣∣∣∣− 1

)
exists and is > 1. Prove that

∑
n an converges absolutely.

Solution:

Since limn→∞ n

(∣∣∣∣ an
an+1

∣∣∣∣− 1

)
exists, we can conclude that

∣∣∣∣ an
an+1

∣∣∣∣→ 1. Therefore,

lim
n→∞

n

(∣∣∣∣ anan+1

∣∣∣∣− 1

)
= lim
n→∞

n

(
1−

∣∣∣∣an+1

an

∣∣∣∣).
By Corollary 9.2.9 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert,
we can deduce that

∑
n an converges absolutely.
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2.2 (a) If
∑
n≥1 an is an absolutely convergent series of real numbers, and σ is a bijection of the set of

natural numbers to itself, prove that
∑
n≥1 aσ(n) also converges to the same sum.

Solution: See Theorem 9.1.5, Introduction to Real Analysis by Robert G. Bartle and Donald R.
Sherbert

2.2 (b) Prove that the series
∑
n≥0

1
n!+(n+1)! converges to 1.

Solution: By rewriting

1

n! + (n+ 1)!
=

1

n!(n+ 2)
=

n+ 1

(n+ 2)!
=

1

(n+ 1)!
− 1

(n+ 2)!
,

we see that

N∑
n=0

1

n! + (n+ 1)!
=

N∑
n=0

(
1

(n+ 1)!
− 1

(n+ 2)!

)
=

(
1

1!
− 1

2!

)
+

(
1

2!
− 1

3!

)
+ · · ·

(
1

(N + 1)!
− 1

(N + 2)!

)
= 1− 1

(N + 2)!
.

Since lim
N→∞

N∑
n=0

1
n!+(n+1)! = lim

N→∞

(
1− 1

(N+2)!

)
= 1, we get

∞∑
n=0

1
n!+(n+1)! = 1.

�

3 (a) Let S be a subset of R. Define its interior S0.
Prove that (S0)c = Sc, where Ac denotes the complement of a set A.

Solution: Interior A0 of a set A is the largest open set contained in A. Since S0 ⊆ S, we have
Sc ⊆ (S0)c = closed set (since S0 is open). Thus, Sc ⊆ (S0)c and therefore S0 ⊆ (Sc)

c
.

Other way inclusion: Since (Sc) is a closed set containing Sc, (Sc)
c

is a open set contained in S.

Thus, (Sc)
c
⊆ S0. Hence we proved that S0 = (Sc)

c
. That is, (S0)c = Sc.

3 (b) Let S be a subset of R. Define its closure S̄.
Prove that (S)c = (Sc)0.

Solution: Closure Ā of a set A is the smallest closed set that contains A. From the question 3(a),

we have S0 = (Sc)
c
. By replacing S by Sc, we get (S)c = (Sc)0. Hence proved.

�

4.1 (a) For the function f(x) = 1
e1/x+1

defined for x 6= 0, determine whether the left hand and right hand

limits exist at 0. Draw a rough graph of f(x).

Solution: Let us consider the function f(x) = 1
e1/x+1

. When x→ 0+, 1/x→∞. Thus, e1/x →∞
and therefore 1

e1/x+1
→ 0. i.e.,

lim
x→0+

f(x) = 0.
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Figure 1: A rough graph of f(x)

When x→ 0−, 1/x→ −∞. Thus, e1/x → 0 and therefore 1
e1/x+1

→ 1. i.e.,

lim
x→0−

f(x) = 1.

4.1 (b) Prove that a uniformly continuous function defined on a bounded subset of R must be bounded.

Solution: Suppose f : A ⊆ R → R is a uniformly continuous and A is bounded. Then, by
Theorem 5.4.8 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert, f
has a continuous extension g on A. That is, g : A → R is a continuous function and f(x) = g(x)
for all x ∈ A. Since A is bounded, A is compact and hence g is a bounded function. Therefore, f
is bounded.

4.2 (a) Prove that there exists no continuous bijection f from (0, 1) to [0, 1].

Solution: Suppose f : (0, 1) → [0, 1] is a bijective continuous. Choose a, b ∈ (0, 1) such that
f(a) = 0, f(b) = 1. Without loss of generality, assume that a < b. Then, f : [a, b] → [0, 1] is
continuous. By Intermediate Value Theorem, f([a, b]) ⊇ [0, 1]. Therefore f([a, b]) = [0, 1] and thus
f : (0, 1)→ [0, 1] cannot be bijective. Hence the result follows.

4.2 (b) Prove that the only functions g : R → R satisfying |g(x) − g(y)| ≤ |x − y|2 for all x, y are the
constant functions.

Solution: For x 6= y, we have ∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ ≤ |x− y|.
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By letting y → x, we get that

g′(x) = lim
y→x

g(x)− g(y)

x− y
= 0.

Since g′(x) = 0 for all x, g must be constant.

�

5.1 (a) Compute limx→0+
log(x)
x .

Solution: Since 1/x→∞ and log x→ −∞ when x→ 0+, we get

lim
x→0+

1

x
log x = −∞.

5.1 (b) Prove that the Taylor series of ex + e−x converges to it for all real x.

Solution: It is trivial to see that Taylor series of ex =
∑

xn

n! . Therefore, Taylor series of

ex + e−x =
∑ 1 + (−1)n

n!
xn =

∞∑
n=1

1

(2n)!
yn,

where y = x2. Then,

an+1

an
=

(2n)!

(2n+ 2)!
=

1

(2n+ 1)(2n+ 2)
→ 0 as n→∞.

Therefore radius of convergence of
∑
any

n is ∞. That is, Taylor series of ex + e−x converges for
all real x.

5.2 (a) Compute limx→π/2
tan(x)
tan(3x) .

Solution:

lim
x→π

2

sinx

sin 3x

cos 3x

cosx
= − lim

x→π
2

cos 3x

cosx
( since sin(π/2) = 1 and sin(3π/2) = −1)

= − lim
x→π

2

−3 sin 3x

− sinx
( by L’Hospital rule )

= 3.

5.2 (b) Let f be a thrice differentiable function such that f (3) is continuous in a neighbourhood of 0. Suppose
f(0) = f ′(0) = f”(0) = 0 and f (3)(0) 6= 0. Use Taylor’s formula to deduce that f does not have a
local extremum at 0.

Solution: Since f (3) is continuous at 0 and f (3)(0) 6= 0, choose r > 0 such that f (3)(x) 6= 0 for

all x ∈ I = (−r, r). By Taylor’s formula, for x ∈ I, we have f(x) = f(3)(a)
3! x3 for some a between 0

and x. Since f takes both positive and negative values in I and f(0) = 0, f dose not have a local
extremum at 0.

�
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6.1 (a) Let f : [0, 1] → R be thrice differentiable. Suppose f(0) = f(1) = f ′(0) = f ′(1) = 0. Prove that
f (3)(t) = 0 for some t ∈ (0, 1).

Solution: Since f(0) = f(1) = 0, by Mean Value Theorem, there exists a a ∈ (0, 1) such
that f ′(a) = 0. Since f ′(0) = f ′(a) = 0, there exists a b ∈ (0, a) such that f ′′(b) = 0. Since
f ′(a) = f ′(1) = 0, there exists a c ∈ (a, 1) such that f ′′(c) = 0. Since f ′′(b) = f ′′(c) = 0, there
exists a d ∈ (b, c) ⊆ (0, 1) such that f ′′′(d) = 0. This proves the result.

6.1 (b) Let f be an infinitely differentiable function defined on R. Suppose f(1/n) = 0 for all natural
numbers n. Prove that f (k)(0) = 0 for all k ≥ 0.

Solution: Since f(1/n) = 0 for all n, continuity of f gives that f(0) = 0. Also, by Mean Value
Theorem, for all n, there exists a x1,n such that 1

n+1 < x1,n < 1
n and f ′(x1,n) = 0. Thus, it is

easy to see that x1,n → 0 as n → ∞ and by continuity of f ′, we get f ′(0) = 0. Again by Mean
Value Theorem, we can get x2,n ∈ (x1,n+1, x1,n) such that f ′′(x2,n) = 0. As x2,n → 0 as n → ∞,
by continuity of f ′′, we get f ′′(0) = 0. By repeating this arguments again and again, we easily see
that f (k)(0) = 0 for all k ≥ 0.

6.2 (a) Consider f(x) = 2x4 + x4 sin(1/x) for x 6= 0; f(0) = 0. Prove that in each interval (−t, t), the
derivative f ′ takes both positive and negative values.

Solution: Take f(x) = 2x4+x4 sin(1/x) for x 6= 0. Then, f ′(x) = 8x3+4x3 sin(1/x)−x2 cos(1/x)
for x 6= 0. If 1/x = −2nπ, then f ′(x) = x2(8x − cos(1/x)) = x2(8x − 1) < 0 as x < 0. If
1/x = 2nπ+π/2, then f ′(x) = 8x3 +4x3 > 0 as x > 0. Thus, in each interval (−t, t), the derivative
f ′ takes both positive and negative values.

6.2 (b) Suppose g is continuous on [0, 2] and differentiable on (0, 2). If g(0) = 0 and g(1) = g(2) = 1, prove
that there exists a ∈ (0, 2) such that g′(a) = 1/2.

Solution:

By Mean Value Theorem, there exists a a ∈ (0, 2) such that

g′(a) =
g(2)− g(0)

2− 0
=

1

2
.

Hence, the desired result follows. �
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